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COMPUTING SPECTRAL FLOW VIA CUP PRODUCTS

PAUL KIRK & ERIC KLASSEN

1. Introduction

In this paper we investigate the spectral flow of the “Dirac” operator
D, =xd,—d * acting on 0+ 2 forms on a 3-manifold M as A4 varies
in the connections'in an SU(2)-bundle P over M . This operator arises
as the tangential operator (in the sense of [1]) for the signature and self-
duality operators on a 4-manifold, and as a stabilization of the Hessian of
the Chern-Simons function on the space of gauge equivalence classes of
connections on P . In the case where A4 is flat, it is a square root of the
(twisted) Laplacian A, acting on even forms.

Our main contribution to the calculation of the spectral flow of these
operators is as follows. If 4 . 1s a path of flat connections on a manifold A/
which either has boundary (Theorem 4.8) or is closed (Theorem 5.1), then
we show that computation of the “local contribution to spectral flow at time
t =07 (i.e., the slopes of the eigenvalues that are crossing 0 at ¢ = 0) can
be reduced to a cup product computation in the cohomology of M with
twisted coefficients. Later in the paper, we carry out these computations
using group cohomology and use the results to compute spectral flow for
various arcs of connections of torus bundles over the circle S’ .

The spectral flow of D, as A varies along a path of connections arises in
several ways in topology: If M is a homology 3-sphere, it gives the grading
of a flat connection on M , viewed as a generator for the chain complex
defining Floer homology. It gives the dimension (mod 8) of the moduli
space of those self-dual connections on M x R with certain prescribed
limiting values. It also enters in the stationary phase “approximation” of
Witten’s 3-manifold invariants; the stationary phase formula states that
for large k Witten’s invariant Z, = f_e“'“ is dominated by the sum
over the flat connections of terms involving various invariants of the flat
connection, in particular the spectral flow to the trivial connection.

Our aim is to give a description of the spectral flow between two flat
connections on M when M is cut along a surface £ C M in terms
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We deal with these issues for the torus in Appendix B. Theorem B.1
shows that analytic paths on the torus are fine. Lemma 6.1 stating that the
families of operators D, vary continuously with the connection on D*xS!
is also proven in Appendix B; essentially the same ideas are involved in
the proof of Lemma 6.1 as in the proof that analytic paths on the torus
are fine. Our applications are to Dehn fillings for which the results for the
torus suffice. In a later paper we will address these problems for a general
surface. '

We finish §6 with an example which shows that the limiting values of
extended I*-harmonic forms (in the sense of [1]) need not vary continu-
ously along a continuous path of operators, even when the harmonic forms
on the boundary vary continuously.

In §7 we present applications of these results to torus bundles over § L
The question which motivated this paper is a conjecture of L. Jeffrey {8]
about the spectral flow between two flat connections on a torus bundle.
This conjecture arises in trying to reconcile the two main methods of in-
terpreting Witten’s 3-manifold invariants, namely the axiomatic TQFT
approach and the stationary phase approximation, as we now explain,

In [8], Jeffrey computes the Witten invariants Z, for torus bundles via
the TQFT axioms, and then uses the stationary phase formula to compute
the “leading term” in the asymptotic expansion as k — oc. This leading
term is a sum, over the gauge-equivalence classes of flat connections on
M , of an expression in the Chern-Simons invariants, Reidemeister torsion,
and spectral flow. By computing the Chern-Simons invariants and the
Reidemeister torsion, Jeffrey gives an formula involving the spectral flow
which must hold if the two interpretations of Witten’s invariant are to be
consistent. This formula implies that the spectral flow between any two
nonabelian flat SU(2)-connections on a torus bundle is congruent to 0
mod 4.

In Theorem 7.4 we show that under mild restrictions this is indeed the
case, and we use this theorem to compute several examples. The beginning
observation is Corollary 7.2, which states that given any two irreducible
SU(2) representations p,, p, of a torus bundle M over S', there exist
aknot K in M and a path of representations p, of z (M — K) joining
p, to p,. By computing group cohomology one sees when the kernel
jumps up, i.e., when an eigenvalue crosses zero. Applying Theorem 4.8 and
Lemma 6.4 reduces the computation of SF(p,, p,; M) to computing the
signature of a bilinear form on cohomology induced by the cup products.
We then use Theorem 5.1 to compute the spectral flow between certain
abelian representations of torus bundles.
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We list in §8 some guestions which we were unable to resolve. These are
mostly of a technical nature, and their solutions would allow us to remove
some of the hypotheses for Theorem 4.8, Lemma 6.4, and Definition 7.4.

We would like to thank D. Hoff for helpful conversations.

2. Spectral flow en a 3-manifeld split along a surface

Let M be a smooth closed oriented 3-manifold, with X c M a smooth
embedded separating surface. Let M, and M, be the closures of the com-
plementary components of A —X,so M = M, Uy M, . Fix an embedding
i:Xx[-1, 1] — M such that (¢, 0) =0 for g € Z. Put a Riemannian
metric g on M such that { is an isometry for some metric on X. Using
i,identify Z x [—1, 1] with its imagein M. Let n: Z x[—1, 1]— Z be
projection.

let E — M be a real vector bundle with a fiberwise inner product
Xx +-y. Assume we are given an identification of E|(X x [-1, 1]) with
n*(E), where E — X is a real vector bundle. Assume this identification
is compatible with a fiberwise inner product on E , which we also denote
by x-y. These inner products give rise to inner products on I'(E) and
I'(E) defined by

(f,g)M=/Mf-gdvol, "(f,g)):=/2f-gdvol.

The words “selfadjoint™ will always refer to these inner products.

Let o: E — E be a bundle automorphism, and let %o be its pull-
back to E|[(Zx[-1, 1]). Let D: T(E) — I'(E) be a first order selfadjoint
elliptic operator. Assume that

* 8 * TN
D=(noag)o (5+n D)

over £ x[~1, 1], where D is a first-order selfadjoint elliptic operator on
I'(E) (called the tangential operator), and s is the coordinate on [-1, 1].
From the above (Proposition 2.A of [4]) we have the following:

(i) ¢*=—0 and 6D =-Do on .

(il) There is a nondegenerate symplectic pairing on L2(E) given by

{f.8}=(f,08);.

(iii) Let Z = ker D . The restriction to # of the symplectic pairing
in (ii) is a nondegenerate symplectic pairing.



510 PAUL KIRK & ERIC KLASSEN

Let {a,} C F(E) be a complete orthonormal basis of LZ(E') with
ﬁak'z v,y foreach k,
with all v, ’s real. Define
P = L? — closure of {og v > 0},
P_= L’ closure of {a, |y, <0}

By (i) above, o(P,) = P_ and ¢(P_) =P, . Also, L(E)=P, & P_&% .
Define E, = E|M,. Let D' = DII(E;), for i=1,2. If V is a subspace
of L*(E), define Lf(EJ.; V) to be the Sobolev Lf-completion of those
smooth sections ¢ of E i satisfying g|Ze V.

Let . C Z be a Lagrangian. Define & 7 to be the restriction of D to
the image of Lf(E 3P+ %) in LZ(EJ.) . Then by Proposition 2.D, [4],
P’ isa selfadjoint elliptic operator. _

We note here that the operators D and &’ both are Fredholm and have
compact resolvents. In the case of D , these are well-known properties of
an elliptic operator on a closed manifold. The fact that & 7 is Fredholm
is proven in [1, p. 55]. The fact that 27 has compact resolvent follows
because its Green’s operator from LZ(EJ.) to Lf(E 5 Py +.%) is bounded
and the inclusion Lf(Ej) — LZ(EJ.) is compact (see [15, p. 168]).

We will also need the following stretched versions of M . Let

M(r) = M,U(E x [-r, ) UM,,
M, (r) = M, U(E x [-r, 0]),
M,(r) = (Ex[0, r]) U M,.

We extend our bundle E to E(r) over M(r), E,(r) over M,(r), E,(r)
over M,(r), and define inner products on these extended bundles using
the pullback of E by 7: Z x [-r,r]—X.

We extend our operator D to sections of these bundles by keeping it the
same over M, and M, and defining it over X x [—r, r] by the formula

D=7"co (n*l3+i>.
as
Our main tool will be the splitting theorem for spectral flow. There are
various versions of this theorem; see [5], [19], [14], and [13].
Suppose we are given one-parameter families D, and 51, te[0, 1],
of first-order selfadjoint elliptic operators related to each other for each ¢
by the formula above. In addition, suppose #(¢) = ker ﬁt has dimension
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independent of ¢, and hence forms a symplectic vector bundle over the
interval ¢t € [0, 1].

Let .£{(¢) and .Z(¢) be continuous families of Lagrangians in the sym-
plectic spaces #Z(t).

We need to assume some nondegeneracy conditions at the endpoints
of the interval. We first assume that there are no nonzero L? solutions
to the equations D6¢ = 0 and Diqﬁ =0, i = 1,2, on the manifolds
obtained by adding an infinite cylinder X x [0, ) to M, for i =1, 2.
Equivalently, the operators D(’) and D; , I =1, 2, have no solutions with
P_ boundary conditions in the sense of [1]. This nondegeneracy condition
is called nonresonance in [14].- _

Recall also from [1] that there are natural Lagrangian subspaces L(', C
#(0) and Li c #(1), namely the limiting values of extended L* so-
lutions. We will require that .%/(0) = aLé and Z/(1) = aLi . In other
words, we assume that the families of Lagrangians .Z/(¢) start and end at
the complementary Lagrangians to the natural Lagrangians. We will say
that the paths .Z(f) of Lagrangians are admissible if they satisfy these
properties.

Let _

G/ (r) = D,ILI(E,(r); P,(1) + Z,(1)).
Notice that the conditions of the preceding paragraphs imply that the ker-
nels of &/ (r) are zero at the endpoints. Then the following is a version
of the main theorem of [5] (see also [19], [14], and [13]).

Theorem 2.1. Assume Dy and D) for i = 1,2 are nonresonant, the
paths £(t) are admissible, and L(l) n L(z) =0= L: n Lf. Then, for large
enough r,

SF(D,) = SF(Z(r) + SF(Z}(r) + 7(Z (1), (1)),

where SF is spectral flow of a family of selfadjoint operators, and y is the
Maslov index of two paths of Lagrangians in the family #(t) of symplectic
spaces. .

(We remind the reader that the spectral flow SF(D,) of a path of self-
adjoint operators is the integer which counts the number of eigenvalues
crossing from negative to positive minus the number crossing from posi-
tive to negative. See [1].)

This theorem has been used to compute the spectral flow in certain
cases where SF (9,1) =0 (see[19], [20]). Theorem 4.8 gives a method for
computing SF (9,') in certain cases when it is not 0, thereby considerably
increasing the usefulness of this theorem.
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3. The Hessian of the Chern-Simons function

We now focus our attention on a particular class of bundles and oper-
ators which arise in the computation of Floer homology [7], and in the
stationary phase approximation of Witten’s invariants [18], namely the
Hessian of the Chern-Simons functions on the space of gauge equivalence
classes of connections (actually the operators we consider are stabiliza-
tions of the Hessian; i.e., the direct sum of the Hessian with an operator
with symmetric spectrum.) These operators were treated extensively by
Yoshida in [19].

In this section, £ and M are asin §2. Define the bundles £ — M
and E - X by

E=A"T"M o A'T"M) & su(2)

~and
E=A"eA & AHT 2o su(2).
Thus ,
T(E) = Q" (M; su(2)) ® Q' (M ; su(2)) = (Q° & Q' )(M; su(2))
and

[(E) = (@ e Q' & Q°)(E; su(2)).
We identify Ed with E(d,so) by (a, B,7) — (a, B+ (xy) Ads) where
x acts as the usual Hodge star operator AT'E - A¥'T*Y and by the
identity on su(2). It is clear that this map is an isomorphism on each
fiber; we take it to give an identification of E[(Z x [-1, ]~ z"E.

Let 4 be a connection on M x.SU(2), which we think of as an element
of Q'(M ; su(2)). We will always assume that on X x [-1,1], A=n"4,
where A is a connection (i.e., 1-form) on X x SU(2). These connections
give rise to exterior derivatives

*+1

d,: Q(M; su(2)) —» Q7 (M su(2))
and
dp: Q°(Z; su(2) — Q(Z; su(2)).

Also, d od = O (respectively, d;od;: 0) if and only if 4 (respectively
AA) is flat. R R R ;

Define D;: I'(E) — I'(E) as follows:

Di(a, B,y)=(xdsf, —+dya—dpxy, dpx ).
Define D,: I'(E) — I'(E) by
D, (o, 1)=(d,7,d, 0 +xd,1).
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We adopt the sign conventions of Warner [17]: d*: Q°(M") — Q' (M")
is defined by

d* = (_l)n(P+1)+l «d+ and %% = (;I)P(n—p)

on Q®(M"). Also A’ =d”* d+dd” on Qp(M)
Our bundle automorphism ¢: E — E is defined by o(a, 8, 7) = (— *
y, *f, *a) . Using these operators, we have:
(1) Dy,=n"60(8/ds+7"Dy on Tx[-1,1].
(2) (DP*=AseA oA if 4 isflat, and (D,)" =AY @A) if 4 is
flat.
3) IA)AA and D, are first-order elliptic selfadjoint operators; in fact
they are operators of Dirac type.

We explain the context in which this operator arises, following Taubes
[16]. If A is a connection on a closed 3-manifold M, and K, =
kerd}: QI(M) ® su(2) — QO(M) ® su(2), then the Hessian of the Chern-
Simons function at A4 is the operator H, = proj K, *d , (note that all pro-
jections are with respect to the L’ norm). Decompose QO(M )@ su(2) @
Q' (M) @ su(2) as QM) @su(2)®K; @ K. Let B, be the operator

d*
B, = (dA A)

on QO(M ) ®su(2) & Kj . Then B, is selfadjoint and has a symmetric
spectrum. Moreover, B,®H, equals D, when A is flat, and is a compact
perturbation of D, in general. Thusif 4, is a path of connections with A4,
and A, flat, the spectral flow of H, equals the spectral flow of H, EBB 4,0

which in turn equals the spectral ﬂow of D,
Assume from now on that the connection A on Ex.SU(2) is flat. Then
# =kerD;= H3(2) © Hy(Z) © HA(3)
by Hodge theory. (The cohomology groups come from the complex
Q"(Z; su(2)) using the differential d;.) By abuse of notation, we will
often use H ;A(z) to denote these harmonic i-forms. Using the DeRham

theorem these groups are also equal to H i(Z; adpy), where po:m X —

SU(2) denotes the holonomy representation of the flat connection A,
and ad p, is shorthand for the local coefficients given by the action of
7, Z on the Lie algebra su(2) via the adjoint representation ad: SU(2) —
Aut(su(2)).
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The inner product on E (and E)isgiven by x-y = —tr(x A*y)/(dvol)
for x,y € (A'T"M), . Hence the inner product on I'(E) is given by

(x,y)M=—fMtr(X/\*y),

and similarly for Z. R
It follows that the symplectic inner product on I'(E) is given by

{x,y}zfztr(x/\y) if (dim x, dimy) = (0, 2) or (1, 1),

{x,y}= —/tr(x Ay) if (dimx, dimy)=(2,0),
b
{x,y}=0 if dimx +dimy # 2.
We will need some facts about the eigenfunctions of 13; on I'(E). Let

H® (£) denote the harmonic 0-forms. Because A~ is a nonnegative selfad-

joint operator, we may write LZ(QO(Z; su(2))) = H%(Z) @ span{gp, }ro, ,
where A~¢p, =, 0, , p; >0 for each k . We also assume that |g,| =1
for all k. Using the ¢, , we will explicitly construct the eigenfunctions of

D;on I'(E).
For each k, define the following four elements of F(E ):

1 i
6]_: = (¢k y _—\/'u:k * d;;(ﬂk ) O) 3 '//]_: = (Oa _ﬁ d;(ok 3 *¢k> s
— 1 - 1
ik = (¢k ’ .\/T_k_ * d;wk P O) s YV = (O’ 'E— d;,‘¢k ) *¢k> .

Proposition 3.1.
2 5 0 1 2 + g + —4 00
L(E)=(Hze Hyeo H)(Z)@span{S, , & , v, » ¥ by
where é; and t,//k+ are /it -eigenvectors of D-, ¢ and y, are — /I, -
eigenvectors of lA);, &5l = 1601 = 1w | = lwg | = V2; and all of these
eigenvectors are mutually orthogonal.

Proof. Everything is a straightforward computation except (perhaps!)
completeness. To see this, note

span{¢; + & 1, @ Hy(Z) = L(Q(2)),
span{y; + y, b © H7(Z) = L(Q'(2),
span{&’ — &}, = im(d”) c L}(Q'(Z)),
span{y, —, }, =im(d) C LZ(QI(Z))-
By Hodge theory, L*(Q'(Z)) = im(d*) @ im(d) @ H;l;(z) :
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4. Spectral flow along arcs of flat connections
on a 3-manifold with boundary

In this section we state and prove our main theorem. It really only
involves M, ; to avoid subscripts we change notation as follows:
Let X be a compact oriented 3-manifold with X = X. Assume X has
a Riemannian metric such that a collar of X is isometric to (and identified
with) Zx [-1, 0], with Ex {0} =90X. Let
X(0) =X U(EZEx[0, c0)),
X(r)=XU(Ex|[0,r), reR,,.

As before let E(r) — X(r) be the bundle (AOT* oA TH(X(r)) ®su(2)
and let E — X be as defined in the previous section. In this section we
will always assume that A4 is a flat connection on X (co) x.SU(2), and that
on Ex[-1,00), A== * 4 where A is a flat connection on X x SU(2).
We then deﬁne the operators D, and D;{ on I'(E(c0)) and F(E) as in
§3.

Let L1 10c(E(00)) denote those sections of E{co) which are locally Lf.

Definition 4.1 [1]. Let ¢ € L1 1oc(E(°°))- We say ¢ is an extended
L section if there is a section ne L? (E) such that (9|Zx[0, c0))~%"(n) €
L? (£ x [0, c0)). In this case, we say 7 is the limiting value of ¢ .

We denote the set of extended L’-sections of E (c0) which are also in

L} e by Li(0)).

Denote by {«,} an orthonormal basis of Lz(E) with ﬁ;ak = Yo,
for all k. It is clear that if ¢ € L? X(c0)) and D ¢ = 0, then
(2 x [0, 00)) is of the form

o0
— S
¢—§ e Fay.
k=1

It follows that if D ,9 =0, then
(i) ¢ € L}(E(c0)) ¢ ¢, = 0 whenever v, <0,
(i) ¢ € L*(E(c0)) & ¢, =0 whenever v, <0.
Define
V =ker(D,|L}(E(c0)) and ¥ =ker(D,|L}(E(c0))).
We now have the following important facts: for all r > 0,
V =ker(D,|LYE(r); P,)) and V =kex(D,|LYE(r); P, + %)),

where these isomorphisms are obtained by restricting sections.

1 loc(
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Suppose ¢ € V ; then on X x [0, o) we write

where « € ker lA)AA: A . In this expression o is the limiting value of ¢.
Proposition 4.2. Let

(x,v) eV c LHQ" @ Q") (X(c0); su(2)).

Then d x = d;y =d,y=0 (i.e, x and y are harmonic).
Proof. By definition of D,, we know *d,y = —d,x which implies
that dd,x =0. On X x [0, oc), we can write '

0 1 2 —ys, 0 1 2
(x,y)=(a,a,a_)+2cke lay, ap, ap),
v, >0

0

where a = (a, o', dz) is a harmonic (0 + 1 + 2)-form, and o, =
0 ,

1 2 . . = .
(ap > 0oy, @) 18 @ v, -eigenvector of Do In pamoular,

0 —uv,5 0
X=a +Ecke “ay.
v, >0

We claim d,x decays exponentially as s — oo. To see this, use the
fact that d, = d;+8()/3s Ads on Q°(X(c0), su(2)) to write

d,x= Z cke_""s(—ykag Ads + dAAag) ,
v >0
which clearly decays exponentially in s.
Compute:

2
|d x IX(oo)

. 2 . *
= lim ldAxIX(r) = rlirg((x, d, dAx)X(r) +{x, d;x>):x{r}) =0,

r—o0
where the first equality is by the monotone convergence theorem, the sec-
ond is by Stokes’ theorem, and the third is because x is bounded and
d,x decays exponentially as s — oo. Therefore, d x = 0 and the other
assertions follow immediately. q.e.d.

Define p: V — # by p(p) = lim_, (¢ly,(q) . in other words, p(9)
is defined to be the limiting value of ¢. (Equivalently, we could define
p(p) =p)?”(¢l):x{s}) for any s > 0, where p,,: LZ(Z) — # is orthogonal
projection.) Notice that H%(Z) =0 = H%(Z) if 4 is irreducible. (The
second equality follows from the Poincaré duality.)
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Proposition 4.3.
(1) If A and A are both irreducible, then

p(V) = im(H,(X) — H().
(1) If A is irreducible and A is reducible, then
p(V) = im(H,(X) - H5(%)) ® Hx(2).
(II1) If A and A are both reducible, then
p(V) = HXZ) @ im(H,(X) » Hy(X)).
Proof. Let (x,y)€V.On Zx[0, co) we write

(5, 9) = (0 @ &)+ 3o e (@8l + bu).
K=1

Then
p(x,y)= (a o', ) € (HA@ HA&B HA)(Z)

Let i: X x {0} — X(oo) be the inclusion. Since d,x = 0, we know
d(i"x) = 0 so i"x is harmonic. But i'x = a0_+ Za, ¢, . Since the
@, are orthogonal to the harmonic O-forms, g, = O for all k. Thus
(x =" a, )+ T2 be Yyl on Tx[-1,00). Since i*y =
o' + Y5 b (~1/ ) d7 oy, o =1°(y) in Hi(Z).

Suppose A and A are both irreducible. Then H%(Z) = H/:;*(Z) =0,
so o’ =a’ = 0. Thus p(x,y) = o' = i"y € im(H}(X) - Hx(Z)).
Since dim p(V) = 5d1m HA(Z) (by Proposition 2. C in [4]; see also [19]),
d1mp(V) 1m(H X - HA):)

Suppose 4 and A are both reducible but non-central. Then HS(X )=
HEA): =H /2?2 =R. Thus p(V) > H%): , (since every covariantly constant
section of X x su(2) extends to one of X x su(2).

It follows that p(IN’) C H%Z & H ;1;2 because p(I~/) is a Lagrangian.
Finaily, since p(x, ) = (a’, o', 0) and we know o' € im(H, X — H}¥),
p(I7) = Y}Z @& im(H /l?X —H }{2) by a dimension argument.

Finally, suppose A is irreducible but A4 is reducible. Because d ,x =0,
x =0 so o’ =0. It follows that (V) C H}Z@Hi}:. Since p(x,y) =
(0, o', a2) and o' € im(Hfl?X — H;}Z) , a dimension argument shows

p(V) =im(H\X » HiZ) o HEE. qed.
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Observe that ker(p) = L* harmonic (0+ 1)-forms on X (oc). It follows
from Proposition 4.9 of [1] that

kerp = im(H,(X, ) » H\X) @ im(Hy(X, T) —» H}X);

since the second summand is always 0, we have ker(p) = im(H;(X , X) —
H;X). Let . Cc # be a Lagrangian with .& ﬂp(I7) = 0. Then

ker(D|LY(E(r); P, + ) = ker(p) = im(H (X (r), T) — H X (r)).

We will now consider 1-parameter families 4, and AAI of connections
related to each other as above for each ¢. In order to insure that the
eigenvectors corresponding to our operators vary smoothly in ¢, we shall
restrict ourselves to the case where 4, and AAI are analytic in {. We now
define these notions more precisely.

Definition 4.4. A path 4, of connections on X x SU(2) is analytic if

a’Au=dAou+[a(t),u]

forall u € Q°(X; su(2)), where a(t) = alt+a212+-- - 1s an analytic path
in Q'(X; su(2)) which converges in the C -norm for all r> 0.

We will assume that 4, and AA, are analytic families of connections
on X(oo) x SU(2) and Z x SU(2) (respectively) such that for each 7,
A, is related to A: as above. Also assume that either case (I), (II) or
(IIT) (as defined in Proposition 4.3) holds for 4, and /Tt for all ¢ in a
neighborhood of 0 (i.e., the case does not jump or change as ¢ passes
through 0).

It follows that the dimension of #Z(¢) = ker D n is constant, and that,
from [9, Theorem VII.3.9], there is an orthonormal basis for # (¢) which
varies analytically in ¢ for ¢ near O.

By [9, Theorem VIL.3.9] we have a family {o,(?)} of orthonormal
Hilbert bases of L° (E) and corresponding families { #;(2)} of eigenvalues
such that for each i, lA)AAa,.(t) = p,(t)a,(f) . By the same theorem, these
families are all holomorpﬁic. We now define a family of unitary operators
U,: LA(E) - LY(E) by U(a,(0)) = a,(?) forall i.

Definition 4.5. The path /Tl is fine if there exists a family {¢;(#)} of
analytic paths of eigenvectors so that U, is a bounded holomorphic path
of operators on I’ (E ) and also restricts to a bounded holomorphic path
of operators on the Sobolev space Lf /z(E ),ie.,if U, =Y, U, t", where
each U, is bounded with respect to both the L? and the Lf /2 horms, and
the series converges with respect to both of these norms.
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Let
V() = k'er(DAl}ij(E(oo))) ., V@)= ker(DA‘)Lf(E(oo))).

Let Z(t) be a holomorphic path of Lagrangians in #(¢) such that Z(0)n
p(V(0)) = 0. A |
Theorem 4.6. If A, is a fine path, then

(1) = D, |LY(E(r); P, (1) + 2 (1)

is holomorphic in t in the “general sense” (see [9, p. 366]).

The proof of Theorem 4.6 is in Appendix A. (The essence of this proof is
to show that the varying domain of Z,(r) can be analytically parametrized
by a constant Banach space in such a way that the composition of Z(r)
with the parameterization is an analytic family of operators on this con-
stant Banach space.) .

Recall that for each ¢, Z,(r) is a selfadjoint operator. (The proof of
this fact is the same as the proof of Theorem 2.C in [4].) In addition,
Z,(r) has compact resolvent, as discussed in §2. As a result we have the
following important corollary.

Corollary 4.7.  If /ft is a fine path, then the eigenvalues and eigenvectors
of Z(r) are analytic functions of t.

This follows from [9, p. 386].

Because of the assumptions on Z(0),

ker(Z,(r)) = ker(p) = im(Hj,o(X, 3) — H;OX).

As t varies, the spectrum of Z,(r) changes. The following theorem
gives the signs of the derivatives of the eigenvalues of Z,(r) which pass
through O at time ¢ = 0 (for large values of r). The number of such
eigenvalues (with multiplicity) is

dimker Z)(r) = dimim(H} (X, £) — H} X).

0

Theorem 4.8. Let A, and /i\t be analytic paths of flat connections on
X(oo) and X related to each other as above. Assume that /ft is a fine path.
Let a € Ql(X(oo) ; su(2)) be the derivative of the path 4, at t =0. In
other words, to first order in t,

d,(®)=d, o+ila, o] +o(f’)

for @ € Q' (X(c0); su(2)). Let W =im(;": H) (X, I) — H;OX). There

is a symmetric bilinear form B: W x W — R deoﬁned by:
B(j'x,j'y)=[x,y]-a€ H'(X,Z;R) =R
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The eigenvalues of B are the limits, as r — oo, of the derivatives (with
respect to t) of those eigenvalues of Z,(r) which are passing through 0 at
t = 0. In other words, if B is nondegenerate, then “the signature of B
gives the contribution at t =0 to SF(Z,(r)).”

Remark. In Appendix B we prove that a holomorphic path of con-
nections on a torus in “standard form” is fine. This is sufficient for our
applications to Dehn surgery. We have recently shown that Theorem 4.8
continues to hold for any analytic path of flat connections, so that one can
drop the assumption that /ft is fine [11].

This theorem reduces the computation of the “local” contribution to the
spectral flow of Z,(r) to a cup product computation in H;O (X, ).

Notation. The symbol [x, ¥] refers to the cup product

H (X, Z;5u(2)) x Hy(X, T; su(2)) —» Hy(X, T; su(2))
defined using the Lie bracket on su(2). Likewise u-a is a cup product,
defined using the standard inner product on su(2), which takes values in
cohomology with trivial coefficients in R.

Proof. The symmetry of B follows because the skew-symmetry of the
Lie bracket cancels the skew-symmetry of the wedge product of 1-forms.
To see that B(j*x, j"y) depends on j"x instead of on x, note that the
following diagram commutes by naturality:

H'(X,0) ® H'X,Z)_ [, ]
jfeid |
H'(X) ® H'(X,3)

2
[,] H(X,Z)

Fix r > 0. Let n = dim W . By Corollary 4.7, we know that there is
a path of orthonormal sets {y,(¢), --- , y,(£)} in Lf(E(r); P (t)+Z(1))
‘such that for each ¢ near 0,
DAr(yi(t)) =A,(0)y,(t) and 4,0)=0 fori=1,---,n.

Renormalize {y,(¢)} so that {y,(0)} are of unit size, where y,(0) is
the canonical extension of y,(0) to Lf(E (c0)). Let r, <r, <--+ bean
unbounded sequence of positive reals. Foreach j, fix r = 7 and construct
i (r; ), -, y,(r;, 6} and {4)(r;, 1), -~ , A,(r;, 1)} as above. For
each i, define A,(r;) = 0(4,(r;, 1))/01|,, -

To first order, write

y,’(rj s t) = (Oa Ci(rj)) + t(ei(rj), f,(rj))
for ¢ near 0, using the fact that y,(r > 0) is a pure !-form. Note that for
each / and j, ?i(rj ,0) € §"(V), the unit n-sphere in V. By compact-
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ness, replace {r J.} by a subsequence such that foreach i =1, --- , n, the
sequence {y,;(r;, 0)} converges in S"(V). Let ¢;° = lim; , _c;(r;).
Differentiating the expression

DA'(yi(rj 1) = 'q'i(rj’ t)yi(rj > 1)

with respect to ¢ at ¢t = 0 yields

(*) DAO(ei(rj) s f,(rj)) = (0, }'i(rj)ci(r_.j)) —(~x[a, *C,'(rj)] > ¥la, Ci(rj)])-
Let (0, x) € V be a fixed 1-form. Compﬁte, using DA0(0> x)=0,

0= (DAO(O » X), (ei(rj) > fi(rj)»x(,j)
= (0, %), Dy (€(r)» i(r ey % (0. %), 0(ei(r) s ir Mo

By (), this gives

(x, 'q-,-(rj)ci(rj))x(,j) - (x, #[a, C,'(rj)])x(,j)
= :I:((O ) X), a(ei(rj) > fi(rj)))aX(rj)’
Lemma 4.9. lim; (0, x), a(ei(rj) R fi(rj)))ax(rj) =0.
Proof. To prove this lemma, we need to take a closer look at the bound-

ary conditions satisfied by y,(r T ).
In the notation of the previous section, recall that

LYE) = H%(Z) @ H;At(Z) @ H/%(Z) ® ip:g{EZ(t) L& (D, W (1), we (D)

Recall that é,':(t) and y/,': (r) are +/u,(f)-eigenvectors of D~ ,and & ()
and y, (1) are —/p,(f)-eigenvectors of D~ . Since y(r;, ) € ,QZIZ(E(r);
P (t)+# (1)), we may write

yir;, DI0X(r) = hr;, )+ S (AL(r,, DG (O + BL(r,, Du (1))
k

where #,(r;, t) € Z(t). We know that A(r;, 0) =0 = AL(rj , 0) for all
i,J,k, because y,(r;,0) € Lf (E(o0)) and hence has no harmonic part
on the collar, and the 0-form part of yi(rj , 0) is harmonic by Proposition
4.2.

Compute

(€r)) D oxe) = a0 Dloxgr o = @y + s
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where

,,0)+Z (1, 0)& (0)+ BL(r,, 0)y; (0))

and Q, =Y, By (r,, 0¥/ (0).
It is clear that ((0, x), 0Q, )aXr) = 0, because (0, x)|3Xr) € P _(0)

and Q, € P (0) +#(0). Hence we need to consider lim, (0, x),
aQ))s x(r,) Because (0, x)|, X(r) decays exponentially in r , it would
suffice to show that @, is bounded in r;. In fact, we will show that Q,
also decays exponentially in r;. First, note that each element of S*(V)
has an expression of the form ‘

- i bo(w)e VAt (0)
k=1

on the collar X x [0, co). Since each ¥, ( ,0) € S*(V), we may write
Bi(r;, 0) = e V*7ib,(v) for v =F,(r;, )e SHV).
Consider the function g: S"(V) — R defined by

gv) =

0%

Note that g is the composition of the following maps:
(1) The restriction map

L{(E()) > S"(V) = L{ ,(EIZ x {r}) = L] ,(E).

(2) The map U: L} ,(E) — Lf p(E) given by Uy =v;.

(3) The L*-norm map on L (E)

The first and third of these are well known to be continuous, and the
second is continuous because A, , is assumed to be a fine path. It follows
that g is continuous.

Because $"(V) is compact g(v) is boundedin R by a positive number,
say N. Then it is clear that |Q,] < e~ VmOr, , where u,(0) is the
smallest nonzero eigenvalue of A 7 on Qo(a; su(2)). This completes the
proof of Lemma 4.9. ’
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By the above lemma, we know that forall x e V',

jlin;o<x , /q-,'('_'j)c,-(rj»x(rj) = JIHEOOC > ¥[a, Ci(rj)DX(rj) ={(x, *[a, C;-)ODX(OO)

=/ tr(x Afa, ¢°]) = x - [a, ]
X(o0)

=[x, ¢ 1-a=B(x,c’).
Substituting ¢;° for x, we see
o0 o0 . o0 e . b
B(C,' > C; )= jll.rf.lo@i > li(rj)c,‘(rj»x(rj) = leI{.loli(rj) >

so this limit exists. Substituting ¢;° for x, k # i, gives
o oo . o0 b
B(Ck s € ),z jllg}j(ck s )-i(rj)ci(rj»x(,-j)

- ]'li{g;((:k(rj) ) li(rj)ci(rf»/"(’j) =0.

It follows that the form B is diagonal with respect to the basis {c;"},

1

with eigenvalues {lim. A (r j)}i . Hence for large enough values of j,

J—oo i

the signs of {4,(r j)} ; are precisely the signs of the eigenvalues of the form
B.

5. Spectral flow along arcs of flat connections on a closed 3-manifold

In this section we prove a theorem analogous to Theorem 4.8 which
holds in the case of a closed 3-manifold M . This theorem gives the spec-
tral flow of a path of operators D, on M, where A, is an analytic path
of flat connections on M . The arnalysis involved is considerably easier
since there are no boundary conditions to worry about.

Throughout this section, M will denote a closed orientable 3-manifold
with a fixed Riemannian metric. Let 4, € QI(M ; su(2)) be an analytic
path of flat connections, defined for ¢ € (—¢, ). Define the vector bundle
E — M and the operator D 4, just as in §3. Note that the domain of D 4,

is constant as ¢ varies; it is the image of the Lf-sections in L?. It follows
from [9, Theorem VII.3.9] that the (orthornormal) eigenvectors {a,(¢)}.
and corresponding eigenvalues {4,(¢)} of D 4, are analytic functions of
t. '

Let W = kerD, = HEO(M) ® H/;D(M), where H (M) denotes the
DeRham cohomology of M with coefhcients in su(2) using the flat con-
nection A. If n = dim W , then there are exactly »n eigenvalues (counted
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with multiplicity) of D 4, passing through 0 at ¢ = 0. After reordering,

assume 4,(0) = 4,(0) =---=4,(0) =0, so {e; (0)}1 | 1s an orthonormal
bas1s for W. The followmg theorem gives the signs of the derivatives
/1 =d/dt|,_,A,(t) for i=1, , B

Theorem 5.1. Let a € Q' (M, su(2)) be the derivative d/dt|,_,A, . De-
fine a symmetric bilinear form G on W as follows: G(x,y) = (x, Ay)
where A: W — T'(E) is defined by

A(y()’ yl) = (= * [*a, y1]a [a’y0]+*[a’ y1])-

Then the eigenvalues of G (as a set with multiplicity) are {/.11 ot s Ayt
Note. If we choose the form a to be harmonic (e.g., by applying a

path of gauge transformations to {4,}), then we may write G(x, y) in

terms of cup products as we did in Theorem 4.8: :

G((xy, x1), Vo> ¥1)) = ([xg, ¥11 =[x, yo]) - xa + [x;, ¥,]- a.

Because ¢ is harmonic, xa € H*(M ; su(2)) so this formula can be in-
terpreted in terms of the two types of cup products discussed following
Theorem 4.8.

Proof. During this proof, we will always assume i € {1,--- , n}.
Let &; = d/dt|,_sa,(t). Let A:T(E) — I(E) be defined by Au =
djde,_,D e Explicitly, A4 is given by

A(uy, u,) = (—*la, xuyl, [a, uy]l + «la, u,]).

(While comparing this formula with the definition of A given in the state-
ment of the theorem, note that [xa, )] = [a, *u,].) Differentiating the
equation D, o,(t) = 4,()a,(t) at t =0 gives

DAO&,. = Aiqi(O) — Aa,(0).
Let xe W,so D 4 * = 0. Then by selfadjointness,
0=(D, x,&)=(x, D, &)= (x, 4,0,(0) — Ao(0)).
Hence forall ie {1, -, n},

14x, @,(0)) = (x, 4a,(0)).

Because this equation holds on the basis {;(0)} of W, the theorem
follows.



COMPUTING SPECTRAL FLOW VIA CUP PRODUCTS 525

6. Dehn fillings

In this section we return to our overall project of calculating the spectral
flow of the path D, of operators along the path 4, of connections on a
manifold M =X Uz Y where, for each ¢, 4, is assumed tobe flaton X .
Recall that according to Theorem 2.1, we have the formula

SF(D,) = SF(Dy (1)) + SF(Dy(1)) + y(Ly(8), Ly(0)).

In §4, Theorem 4.8, we gave a method of calculating the first term,
SF(D,(t)). We needed several assumptions to make this computation;
an important one was that L, () should be chosen to be transverse to the
Lagrangian p(I7(t)) at each time 7.

We will now turn to the computation of the sum of the other two terms
in Theorem 2.1, namely

SF(Dy(1) + y(L(t), Ly(1)).

Though much of this section could be adapted to apply to an arbitrary
3-manifold Y with boundary, we will restrict ourselves in this section
to the case in which ¥ = S' x D*. We make this restriction because it
greatly simplifies the technicalities, and also because this case is adequate
for the applications which we have in mind (see §7). We will at times
make remarks indicating how one might generalize to other choices of Y .

We will observe that the sum of these two terms is independent of any
information about X ; in fact it depends only on the path 4,|X of flat
connections on X and on the path L, (¢) of Lagrangians. In an important
sense we will see that it depends only on the homotopy classes of these
paths (see Lemma 6.2).

By considering certain “test cases” we will determine precisely the de-
pendence on the relevant homotopy classes. This dependence was essen-
tially computed by Yoshida in {20]. However our proof is somewhat more
direct (it does not required adding handles to obtain a higher genus sur-
face), and Yoshida never states the precise form of this theorem which we
will need for our applications. Hence, in this section we will present our
own statement and proof of this theorem (Theorem 6.4).

In what follows we (continue to) identify SU(2) with the unit quater-
nions.

The space of SU(2)-conjugacy classes of representations of the fun-
damental group of a torus, R(T), is a singular real algebraic variety
homeomorphic to S 2 with four singular points corresponding to central
representations. Let Y = D? x S' be a solid torus and let T = aY.
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Let u,A € n (T) be a pair of generators so that x4 bounds a disk in
Y . The map R* - R(T) sending a pair («, ) to the representation
p— e 2 e®™* is a branched cover, with branch points the half-
integer lattice which map to the central representations. This branched
cover also determines a 2-parameter family of flat connections on the
T x SU(2), namely (a, B) corresponds to the connection with 1-form
icdx +ifdy. Here x and y are coordinates on the torus such that
the coordinate axes correspond to # and A. (We identify connections
on T x SU(2) with 1-forms by taking the trivial connection to 0.) The
conjugacy classes of representations of 7,7 in SU(2) form a space home-
omorphic to the gauge-equivalence classes of flat connections on 7', but
using this branched cover we have a family of connections, not just gauge-
equivalence classes. '

Now A = iadx + ifdy extends to a flat connection on Y if and
only if « is an integer. A precise formula for an extension can be found
in [10, p. 352). Let #(T) denote the flat connections on 7, and let
7 (Y) denote those connections on Y which, when restricted to the
collar T x[—1, 0] are a product of a flat connection on 7 and the trivial
connection on [—1,0]. The restriction map r: & 4 (Y) - F(T) is a
trivial fibration with contractible fiber

F={weQyw=00nTx[-1, 0]}.
(A cross section can be constructed by using a slightly larger collar to cut
off the product of a flat connection with the trivial connection.)

Restrict the fibration r to {iadx + ifdy|(a, B) € R’} = R*. Extend-
ing the connections with a € Z flatly over Y gives a (continuous) cross
section ¥ of r over Z x R C R*, the union of vertical lines. Since the
fiber is contractible, y extends to a section over all of R’ , although the
extensions will be flat on Y only over the vertical lines. We will need
to avoid connections whose restrictions to T glve central representations.
Therefore we define

R = xR - (1z)’) c 2 (¥).
So R is a family of connections on Y = p*x s parameterized by the
punctured plane R? - ( %Z)2 . Write A for the restriction of 4 € R to the
boundary torus. We summarize the properties of R:
1. If 4 € R, then on the collar 4 = 6 x A , the product of the trivial
connectjon in the collar direction with the flat connection on the

torus A = iadx + ifdy. (We say A is an standard form on the
collar.)
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2.If Aec R and A = iadx + ifdy, then at least one of a and B
isnot in }Z.

3. If A € R, then 4 is flat if and only if A = iadx + ifdy has
a€Z.

Write

Q={Ae€R|A=iadx+ipdy, a€Z}CR.
So elements of @ are flat connections on Y .

We assume that the Riemannian metric on the torus is chosen so that
{dx, dy} form an orthonormal basis, and the metric on the solid torus is
a product metric near the boundary. The forms w € Q° @ su(2) which are
harmonic with respect to A=iadx + ipdy (ie., dAAw =0= d}w) are
easy to compute and in fact are independent of o and B as long as these
are not both in 1Z: the harmonic 0-forms are just {ia |a € R} 2R, the
harmonic 1-forms are {iadx + ibdy |a, b € R} = R? , and the harmonic
2-forms are {iadxdy|aecR}=R.

Over R we have the (trivial) symplectic 4-dimensional vector bundle
of harmonic forms on the torus, # = # "o #' © #* where

#°=Rx{ai|aeR},
#' =R x {aidx+bidy|a,beR},

and

#' = Rx {aidxdy | a e R}.
The symplectic structure is given by a(ao , axaz) = (—=* o? , xa! , *ao) , as
described in §2.

Remark. Given any continuous family of connections on any surface
so that the dimension of the kernels of the family 132 is constant, one
obtains a corresponding bundle /# over the parameter space whose fiber
over A is kerD n This follows from the fact that the family IA)AA forms a
continuous family of closed operators in the graph topology and Theorem
IV.3.16 of [9]. For our connections in standard form over the torus this
bundle is canonically trivial.

We let . c # be the (trivial) Lagrangian subbundle whose fiber at
each point of R is

Z =0&Ridx@Ridxdy.
The important observation for our purposes is that o(.%) equals p(IN/)
along Q, and, in particular

1. p(I7) forms a smooth Lagrangian subbundle of # along Q, and
2. 2 istransverse to p(V) along Q.
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To see this, first notice that a choice of meridian and longitude gives
a canonical identification of H'(3Y ; ad p) with R’ if p 1s a noncentral
representation. (For example this is isomorphic to # ! .} - Then Propo-
sition 4.3(IIl), together with the each computation that the image
im(Hl(Y; ad p)) — HI(BY; ad p) & R’ is constant as p varies in the
noncentral representations of z,Y, shows that p(I~/) C # is constant
and in fact equals the restriction of o(.Z’) to Q, namely Ri®oRidy @ 0.

This choice of .Z is not canonical, and one might try other choices.
A more natural choice is to take .2, = a(p(I7A)) for all 4 € R; this is
the choice taken in [19]. Unfortunately, this is not in general a continuous
subbundle. We will give an example, at the end of this section, of a smooth
path of flat connections on the trefoil knot complement so that p(¥) is a
discontinuous subbundle of # . Our choice is the one which makes the
computation easiest. (In [19], Yoshida proved that the Riemannian metric
and a path of connections could be perturbed so that p(I~/) is continuous
along the path. His proof requires that the boundary surface have genus
greater than 1.)

For A€ R, let

2 —~
D(Z)=D,L(E; P (4)+Z,),
where D, is the operator on E = (Qo ® Ql)(Y ; su(2)) constructed in

§2, and P+(/’l\) refers to a span of the positive eigenvalues of the operator
D+. _ .
Notice that the equation D, ¢ =0 has no L? solutions if 4 € Q. The
reason is that since A4 is flat, the L*-solutions equal the image of the rela-
tive cohomology in the absolute cohomology [1]. But H° (Y, T;adp,) =
0 and H'(Y, T;adp,) = 0. It follows that if 4 € O, then P,(¥) has

no kernel. (There are no extended L? solutions because of the assumption
that .& is transverse to p(V)).

Let Lag — R denote the fiber bundle whose fiber over 4 is the space
of Lagrangian subspaces of #,.

Lemma 6.1. The map Lag — {selfadjoint, closed operators on LZ(E)}
which takes a Lagrangian L C #, to the operator & A(P+(/f) + L) is
continuous in the graph topology on closed operators.

The proof of this lemma is contained in Appendix B, and works for
any manifold whose boundary is a union of tori, not just S' x D?. (In
a more recent paper j11] we show that Lemma 6.1 holds for any surface.
In particular, there are analogues of Theorem 6.4 for any 3-manifold with
boundary.)
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Let CO(R, Q) denote the space of all continuous paths I — R with
endpoints in Q. It follows from Lemma 6.1 that given any path ¢ ¢
CO(R , @) the spectrum of the operator 9‘1“) (&) varies continuously in
t [9, pp. 107, 291]. Thus we can think of the spectral flow of 94(0(3)

as a integer-valued function on CO(R , Q).

Lemma 6.2. The function SF(Z(Z)): CO(R » Q) — Z is a homotopy
invariant and is additive with respect to composition of paths. In particular,
there exists a cohomology class y € H 1(R, Q;:;7Z) so that SF (9‘1(3 )
= x([4])-

Proof. Notice that by hypothesis on ., the operator Z,(-%°) has no
kernel if A4 lies in Q. In particular the spectral flow is zero for paths
lying entirely in Q. Suppose that ¢ and ¢' are homotopic paths in R
via a homotopy keeping their endpoints in Q. Using the homotopy one
sees that the spectral flow of 2 (%)) is the same along ¢ and ¢’ . Now
SF(2(%)) is clearly additive with respect to unions of paths. These facts
guarantee that there exists a class y with the stated properties. g.e.d.

Suppose we wish to apply Theorem 2.1 under the following conditions.
A, is a path of connections on X U2 ¥ such that A4,]X is flat for all

t
t,and A,, 4, are both flat on X UY. We will also assume that on the

collar 7% x I , we have 4, = n*(zi), where /ft is in standard form and
has noncentral holonomy for all ¢ € [0, 1]. In addition, we assume that
A,|X isirreducible for all 7. Because A\t is in standard form for each 1, it
may be thought of as a path in R. We will denote this path by ¢: I — R.
We will make the following assumptions on ¢ (which are actually implied
assumptions on 4,): "

(1) gq: I — R is an immersion.

(2) Ing (@) =H0, 1}.
(3) dg/dt is transverse to Q at g(0) and ¢(1).

Definition. We define Imm(R, Q) to be the set of all smooth paths
q: I — R satisfying (1), (2), and (3) above.

In order to calculate SFy(D,) using Theorem 4.8 we will need to
choose a path %, of Lagrangialfs in # with the property that for all
te0, 1], Z Np(Vy(t)) = 0. Thus the following lemma will be helpful.

Lemma 6.3. Assume that A, and q satisfy all of the above conditions.

Then

P(ﬁx(to)) = 0 & Span (%% ) @ Span(idxdy).
t=t,
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Proof. By Proposition 4.3, we know that
p(Vy(ty) = 0@im(j*: H (X) — Hp (T%)) & span(i dx dy).
) o

So we need to show that im(;*) = span(dg/dt|,_, ). Since A4|X is flat

for all ¢,
dA

d_ttL, € H/lilo (X).
Tracing through the definitions, we see that
. [d4, _dA4, dq
/ (—d—t— t=t0> - —dT)t= dt t—to

Because g is an immersion, dq/dt #0 € H; IA (T ). By Poincaré duality,

im(j”) is 1-dimensional, so im(j*) = span(dq/dt)
We then see that it is easy to choose .Z, transverse to p( VX(t)) by :
setting

Z, = (0 @ span (i,q) @ span(idx dy)) = span(i) ® span (*%,—?—) @ 0.

Note that with this choice of %] it follows that .%, is transverse to .7, for
i =0, 1 because of the transversality condition at ¢(0) and q(1). Thus
to each path ¢ € Imm(R, ), we have assigned a path of Lagrangians
Z, C Z . This path is well-suited for the application of Theorems 2.1 and
4.8 in the cases where g arises from a path A4, of flat connections on X .

Definition. If ¢ € Imm(R, Q), define the writhe of ¢ to be the Maslov
index of span(dq/dt) and the constant path of Lagrangians (i dy) in the
space &' = span(idx, idy). This is simply the intersection number rel
boundary of the two paths ¢ — (¢, span(dq/dt)) and ¢ (¢, span(idy))
in I xRP'.

With these choices, we have

Theorem 6.4. Given a smooth immersed patl. q € Imm(R, Q),

(I) the integer y(Z , L) is the writhe of q .
(I The mod 8 reduction of the cohomology class ) determined by
SF(Z(Z)) in Lemma 6.2 is given by zntersectmg a path q with
the cycle represented in Figure 1.

Remarks.

1. Given two gauge-equivalence classes of SU(2) connections on a
. closed 3-manifold M , their spectral flow is well-defined only mod-
ulo 8. The usual proof of this fact is to lift a loop in & = & /&
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to a path in & . This path then defines a connection on an SU(2)
bundle over M x S’ , and the spectral flow on M is identified
with the index of the self-duality operator on M x S'. This in-
dex in turn is computed by the Atiyah-Singer index theorem to be
8k —3(1 —b,(M x S')+ b} (M x S')) which is equal to 8k since
the signature of M x St is zero.

2. Theorem 6.4 generalizes a result of Yoshida [20] which considers
only the case of smooth paths of flat connections on X, which
in this context corresponds to a situation in which the first term
SF,(Z,) in Theorem 1 vanishes.

Proof. The proof of (I) follows from the observation that if L, , K,
are two paths of Lagrangians in a symplectic vector space H , and we give
R o H &R the obvious symplectic structure, then

»L,,K)=yReL o0,00 K, oR).

To prove (I), it suffices to try some test cases since any cohomology class
in H' (R, Q; Z) is the intersection with some cycle of the form described
for some choice of integers; it suffices to identify these integers. The ar-
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[ ]

IM(R(X) — R(T))

FiGURE 2

gument is basically similar to Yoshida’s: the computations of Fintushel
and Stern [6] for surgeries on the trefoil knot give us sufficiently many test
cases. For one example, consider +1 surgery on the right-handed trefoil
knot which is the Poincaré homology sphere. Write this as XU, Y, where
X is the trefoil complement, and Y = D? x §' is the solid torus glued
back in. The space of non-abelian representations of X is a smooth arc
[10]. This maps to R as shown in Figure 2.

In this figure one sees that there are two representations which send the
meridian to 1, i.e., which extend to representations of z, M . This path
intersects a single vertical line. The spectral flow on M between these
two representations has been computed in [6] to be 4 mod 8. On the
other hand, since the path between the two representations is a piece of
a smooth, 1-dimensional real algebraic variety, the Zariski tangent space
H 1(X ;adp,) is 1-dimensional and maps injectively to H ! (0X;adp,).
Thus the image X 1(X 0X;adp,) —~ H 1(X ad p,) is zero for all ¢ along
this path. Therefore, the operators &, (X ) have no kernel along the entire
arc, and the spectral flow must equal zero. Thus the sum of the other two
terms in Theorem 2.1 is equal to 4 mod 8 for this path. ;

Other examples (e.g., +1/2 surgery on the trefoil) give paths which
intersect the horizontal lines. These paths can be used in the same way to
finish the proof. q.e.d.

We finish this section with the promised example showing that the
spaces p(V) need not form a smooth or even continuous subbundle of
# , even when the path of connections is smooth and the bundle # is
smooth. As remarked above, discontinuities, if there are any, arise at
points where there are L? solutions to D ,6=0.
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Let X be the complement of the trefoil knot. Then 7, X = (x, y | xt=
y3) . A smooth path of representations is given by

T

p,(x) = (cost)i+ (sint)j, p,(y)=cos 3 +sinZ

3
This path is abelian for ¢ = 0, and nonabelian for ¢ # 0. The meridian
is given in these generators by u = yzx—l. The real part of p,(u) is
equal to (v/3/2)cost, and since this is not equal to +1 in this interval,
it follows that the restriction of p, to the boundary is non-central for all

t e (-.1,.1). According to Proposition 4, when ¢ # 0,
p(V)=im(H'(X;adp,) —» H'(9X; adp,)) @ H (0X ; ad p,).
and when =0,
p(V)=H’0X; ad py) ®im(H' (X ; ad py) — H'(8.X ; ad py)).

Since HY(0X; adp,) =R HZ(BX; adp,) forall ¢, p(f’) does not form
a continuous subbundle.

Actually, the situation in this example is much worse: the subspaces
im(Hl(X; adp,) — H (0X;adp,)) do not form a continuous family
even though x and A give a canonical identification of H l(8X ;ad p,))
with R? for all ¢. So even if one attempts to “mod out” the 0- and
2-dimensional part of H*(8X) the corresponding family of Lagrangians
still does not form a continuous family. We leave the proof of this fact
to the interested reader. The basic idea is that when ¢ # 0 the image
im(H'(X; ad p,) — Hl(BX; ad p,)) is tangent to the image of the irre-
ducible representations in R(J X), but at ¢ = O this image is tangent to
the image of the arc of abelian representations R(4X).

i, te(-.1,.D.

7. Application to torus bundles

We will apply the results of the previous sections to compute the spec-
tral flow mod 4 between two representations of the fundamental group of
a 3-manifold M which fibers over the circle with fiber a torus. To com-
pute the spectral flow between two nonabelian representations, we will use
Theorems 4.8 and 6.4. The basic idea is to find a knot y in M so that the
complement of y admits a path of representations joining the two given
representations. The results of §4 will be used to evaluate the spectral flow
on M — y, and the results of §6 will be used to compute the other two
terms in Theorem 2.1. Later in this section we will use Theorem 5.1 to
compute the spectral flow between two abelian representations.
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We first show that if p, and p, are nonabelian representations of a
torus bundle over the circle, M , then there exist a knot y in M and a
“straight line” path of representations of n(M — ) from p, to p,. The
construction works also for an arbitrary surface bundle over S ! , and so
we will consider this more general case. This has independent interest; in
particular the result of [10] can be applied to this path to give yet another
method for computing the Chern-Simons invariants of special representa-
tions of surface bundles (see [2]).

Let F be a closed, oriented surface, and let #: F — F be a homeo-
morphism. Let M be the mapping torus

M=FxI/~

where (x,0) ~ (m(x), 1). So M is an F bundle over S'. The funda-
mental group of M is an HNN extension:
M= (nF, 1| 121" = m(z) for each z € n, F).

Let B: H\(F;Z) — H,(F;Z) be the map induced by m on homology.
Fix a generating set x,, --- , X, 2 for =, F forming a symplectic basis for
H | (F; Z), and use this basis to identify B witha 2g x 2g matrix (acting
on the left).

In {10] we called a nonabelian representation p: 7, M — SU(2) a spe-
cial representation if the restriction of p to a fiber is abelian. One checks
that given a vector ¢ = (@, - , ¢,,) € R*8, (identifying SU(2) with

the unit quaternions) the assignment x, — e J defines a special

representation of 7, M if and only if ¢(B+1) € z* (Proposition 5.5 of
[10]). Furthermore, every special representation is conjugate to one of this
form. We will denote this representation by Py (If F is a torus, then
every nonabelian representation is conjugate to a special representation.)

Notice that replacing ¢ by ¢ +v for v € z%¢ gives a conjugate
representation.

If h: F — F is a homeomorphism, and {y,} is the new basis of
n, F defined by h(x,) = y,, then ps(¥i) = 2% where ¢ = ¢H.
Here H is the matrix induced by 4 on homology (with respect to the
basis {xk}ii 1) - (Invariantly, ¢ is an element of H '(F ; R) which satisfies
m'(¢)~¢cH (F;2).)

Let y be a simple closed curve in F. Identify F with F x {0}, and
view y asaknotin M. Then M —y is obtained by gluing (F — y) x 0
to F x 1 using m. Therefore,

n(M-y)=(nF, 1| 1zt =m(z) foreachze n(F —7)).
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Lemma 7.1. Let ¢ and 6 be two vectors in R which defines special
representations p, and p, of m,M . (So $(B+1) € Z*¢ and 6B+1)e
y/ad .) Then there exists a simple closed curve y on F so that for each
t € [0, 1], the assignment x, — 21708, +16,) , T+ J defines a path of
representations of M —y from p, to p,.

Proof. If (0 —¢)(B+1)=0,then (¢(6 — ¢) + ¢)(B +1I) € Z* for all
t,and so (1—1)¢+1t6 defines a path of representations of 7, M from p ¢
to p,. Thus assume (6 —¢)(B+1)#0.

Endow Z*¢ with the standard symplectic pairing. There exists a sym-
plectic matrix H such that (8 — ¢)(B+ I)H = (1,0, .-- ,0) for some
integer n since any primitive vector in Z*¢ is the first vector of a sym-
plectic basis. Choose a homeomorphism 4: F — F so that A, = H in
the basis {x,}. The representations p s and p, are expressed in the ba-
sis y, = Hx, by ¢ = ¢H and 6 = OH. Moreover B is changed to
B'=H 'BH . Thus

0 - B +I)=(0—-¢)(B+D)H=(n,0,---,0).

Let y = y,. Then H,(F —y) is generated by y,, y;,---, Vg - Using
the remark preceding the lemma it is therefore easy to check that y,
L2106, +16,) , T+ j defines a path of representations of 7 (M — y)
from p, to p,. qed

The proof shows how to find the desired curve: First, choose a sym-
plectic matrix H so that (6 —¢)(B+I)H = (n, 0, --- , 0). Then choose
a homeomorphism inducing A on homology, and let y C F be a simple
closed curve representing Hx, .

In particular, if M is a torus bundle, we have

Corollary 7.2. Let M be a torus bundle with monodromy matrix B,
and let p o> Pot M — SU(2) be special representations corresponding to
¢ = (¢,,9¢,) and 0 = (0,,0,). Then (1 — t)¢ + 10 defines a path of
representations of m,(M —y) where y = px, +qx,, (p, q) is a relatively
prime pair satisfying

(1) w-o05+n(") =0

Moreover, (1) uniquely determines y (as an unoriented curve) up to isotopy
intermsof @ and ¢ if det(B+I1)#0.

Proof. All but the last statement follow from the previous lemma. The
reason why (1) uniquely determmes y as an unoriented curve is that
given any vector v = (v,, v,) € Z*, there is a unique (up to sign) primi-
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tive vector w € Z? orthogonal to v, namely (-v,, v,)/gcd(v,, v,). So
(¢ —0)B+1I)=n(—q, p) with ged(p, q)=1. qed.

We set up some notation which will be used for the rest of this section.
We use B € SL,(Z) to denote the monodromy and take:

s-(2 ).

Given 6, ¢ € R? determining special representationbs pp and p > let y
be the corresponding knot in M . Let X , bethe complement of a tubular
neighborhood of y. Let

6(t) = (6,(1), 6,(1)) = (1 - 1)0 + 19,
and letp,: le — SU(2) be the path of representations given by

2mi6, (1)

(2) Tej,  xee T

The fundamental group of X, is

—1 b d
m X, =(x,p,t|[x,pl=1, xfyle | =400,

The meridian of Xy (i.e., the boundary of a disk fiber in the tubular

neighborhood of y in M) is represented by the element

ra+sb_re+sd  —r —s _—1
u=Xx ¥y > y T,

where r and s are any integers satisfying rg — ps = 1. We can take
a longitude to be any complementary curve to x; a convenient choice is
A = x"y?. Figure 3 explains these choices.

Finally let A C R® denote the half-integer lattice A = (%Z)2 .

Given a conjugacy class [p,] in R(M) of nonabelian representations,
thereisa 6 € R® so that P, is conjugate to p, . Of course ¢ is not unique,
it may be replaced by £6+v forany v € 72 . Given two conjugacy classes
[»,] and [p(], a choice of 6 and ¢ in R? so that Py~ Py and p, ~ p,
determines the curve y C T’ c M via (1). In general, different choices of
# and ¢ will give a different curve y, and the resulting paths pt' given
by (2) may have different properties.

Lemma 7.3. In the notation of the preceding paragraphs:

1. The representation p, is abelian if and only if 6(t) € A.
2. The restriction of p, to aXy is given by

p, (1) = exp(2mi((r(a + 1) + 5b)0,(f) + (rc + s(d + 1)0,(1)))

and
p,(A) = exp(2zi(p0,(t) + q0,(?))).
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FIGURE 3

In particular, the restriction of p, to the boundary X, is central if and

only if
o(t) ((B +1 (;) , (Z)) €A

Moreover, if p, is abelian, then the restriction of p, to the boundary is
central.

Proof. 1. Since p,(t) = j, p, is abe__lian if and only if gt(x) and
p,(¥) are both central. Since p (x) = 01 and p,y) = %0 this
can happen only if 8(z) € A.

2. pt(”) — pt(xra+sbhrc+sdtx~ry—st—1) - pt(xra+sbyrc+sdxrys) . Since
x and y commute, (1) clearly holds, and (2) is obvious. q.e.d.

In order to apply the theorems of the previous sections, one needs paths
of representations of X , so that the restriction to the boundary is not cen-
tral along the path. This is because when the path passes through a repre-
sentation whose restriction to the boundary is central, then the symplectic
space /7 jumps up in dimension from 4 to 12.

Definition 7.4. Given conjugacy classes [p,], [p,] of representations
of n, M , we will say that 0, ¢ € R’ forma good pair for [p,], [p,]1 if p,
is conjugate to p,, p, is conjugate to p 5> and the path p, defined by (2)
restricts to a path of noncentral representations of z X y -
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In every example which the authors tried, it was always possible to
find a good pair given any two conjugacy classes of representations of
n, M. We do not know a proof that such a path can always be found,
but we conjecture that one always exists. Finding a good pair is a tech-
nical problem of linear algebra over Z. Proving that § and ¢ can
be chosen so that p, is nonabelian for all ¢ is easier. For example,

a fundamental domain for the (Z & Z) x (Z/2) action on R given by
(m,, m,, £1)(6,0,) = (0, + m, 6, + m,) is the set

D =([0, 1) x (0, ) U ([0, 3] x {0} U ([0, 3] x {3}).
If we choose 6 and ¢ in D, they lie in D — A since p, and p s are
nonabelian. But then the entire path (1—1)0+t¢ liesin D—A, and so by
the previous lemma this determines a path of nonabelian representations.

We can now state the main result of this section. This is a computation
of the spectral flow mod 4 between two nonabelian representations of a
torus bundle over S' . This theorem verifies Conjecture 5.8 of [8] for the
case G = SU(2) at least when a good pair of representatives can be found
for a pair of representations.

Theorem 7.5. Let M be a mapping torus with fiber T? and mon-
odromy matrix B. Assume that £1 are not eigenvalues of B. Let [p,],
[p,] € R(M) be two conjugacy classes of nonabelian representations, and
assume that a good pair 0, ¢ € R? for Pg> Py can be found. Then the
spectral flow of the Hessian of the Chern-Simons function between p, and
p, is congruent to 0 mod 4.

Before we embark on a proof of this theorem, we first do a few compu-
tations to show the reader how to find all nonabelian representations of a
torus bundle, and how to find paths which satisfy the technical restrictions
of this theorem.

We start with a simple example. Take the monodromy matrix

p-(24):

The determinant of B + I is 5. Since every nonabelian representation
is conjugate to a special representation p, with 6 € D — A (D is the
fundamental domain described above), the possible values of ¢ lie in
(%Z)2 N (D — A). This intersection contains 12 points. One easily checks
that of these twelve points, only (2, 2) and (£, 1) satisfy 6(B+1) € Z°.
Thus there are two conjugacy classes of nonabelian representations of M .
To apply Theorem 7.5, we must check that ¢ and ¢ form a good pair.

Let 0 =(2, %) and ¢ = (%, 1); then (6 —¢)(B+1I)= (1, 0). Therefore,
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y=(p,q)=(0, 1). Hence:
(1 -0 +1¢) ((B +I)<(1)> , (?)) .

6(1) ((B”)(;)-’ (Z))
_ (2,%)#(1"%)'

This does not pass through A for ¢ € [0, 1]. According to Lemma 7.3 this
implies that p, restricts to a noncentral representation for each ¢ € [0, 1],
i.e., @ and ¢ form a good pair. Theorem 7.5 now implies that the spectral
flow from p, to p 4 is congruent to 0 mod 4.

This example has H (M ; Z) = Z, and the abelianization is generated
by 7. Therefore the space of conjugacy classes of abelian representations
is an arc. A parameterization is given by the path of representations:

p(1)=¢€", p(x)=p)=1, sel0,n].

Moreover, this arc is a2 smooth component of R(M) except at its end-
points (a calculation similar to those of Lemma 7.7 below shows that
HI(M;pad p,) = R for all s € (0, n)). Therefore, the spectral flow
between p. and p is —1 mod 8 (using Floer’s convention of counting
the intersections of the graph of the spectrum with a line from (0, —¢) to
(1, &)). Computing the spectral flow to the trivial representation requires
computing the eigenvalues on the bilinear form at the trivial representa-
tion. This is done in general in Theorem 7.9 below.

As a second example we find a bad (i.e., not good) pair § and ¢. Let
M be a mapping torus with monodromy:

7 5
B= ( ’ 3) .
Then ;M has 5 nonabelian representations, which can be found in the
same way as the first example. Among these are the representations p,
and p, corresponding to 6 = (0, }) and¢ = G, 5.

With these choices of 8 and ¢, we see that (6 —¢)(B+1I)= (-2, —-1),
and so the curve 7 to be removed is y = (-1, 2). But with this choice
of 7, po(u) =1 and py(A) = —1, as is readily checked. Thus 6 and ¢

do not form a good pair, and so Theorem 7.5 does not apply. However
6 can be replaced by +8 + v for v € z? , and similarly for ¢ without
changing their conjugacy class. We can try a different choice to see if we
get a good pair.

Indeed, with the choices § = (1, H=(0,$+(,0) and é = ¢ =
(3> 1)

0—)(B+I)=(6,4).
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Thus the knot to be removed is y = (2, —3). Arithmetic gives:

L2TG-2) 27i(5/4—~5¢/6)

p(u) = , pA)=e
which does not pass through any central representation for ¢ € [0, 1]. So
6 and ¢ form a good pair. Hence Theorem 7.5 applies to this path, and
the spectral flow from p, to p N (which of course is independent of the
representatives 6 and ¢) is congruent to 0 mod 4 after all. In this example
the spectral flow between any two nonabelian representations is congruent
to 0 mod 4.

We begin the proof of Theorem 7.5 with some cohomology calculations.
We will use the usual model for group cohomology, so Co(n, su(2)) =
su(2) and C*(m, su(2)) = Maps(n”, su(2)). Moreover, 60(v)(x) =v -
x-v for v € su(2) and 8'(f)(x,») = f(x) +x - f(¥) — f(xy), where
Xx -v means ad p(x)(v). Identify su(2) with the imaginary quaternions,
and write su(2) = Ri®Cj. The cup product is defined as follows: if a, b
are 1-cochains, and x, y € m, then

[a’ b](-x’ y) = [a(x) , X b(y)]
If ¢ is a O-cochain, then
[a, cl(x)=[a(x), x-c].

We refer to [3] for details.

Lemma7.6. Let M be a torus bundle over S* , with monodromy matrix
B. Assume that —1 is not an eigenvalue of B. Let p be a nonabelian
representation. Then HO(M ;adp) and H 1(M ; ad p) are both zero.

Proof. We continue using the notation described before Lemma 7.3.
Note that H'(M; ad p) 